Impact of Non-Facial Regions on Face Recognition Performance

Michelle Jou
Kyle O’Brien
Michelle Rybak
Michael Thieme

2018 INTERNATIONAL FACE PERFORMANCE CONFERENCE

29 November 2018
Background

• Novetta conducts biometric testing and builds automated face synthesis software
• Our work is heavily reliant on precise segmentation of the face region
• We frequently observe anomalous behaviors in face recognition (FR) systems
 - Anomalies: instances where FR behavior does not align with visual expectations
• This briefing examines whether FR tools use non-face regions (“chassis”) for recognition
 - A subject’s chassis can vary across photos (hair styles, clothing, etc.), such that it is not suitable for determining identity
Hypothesis

• In the synthesis context, two images that share the same chassis but different faces should generate low comparison scores

• Such images should emulate comparison scores generated through different chassis and different faces, i.e. true impostor comparisons
Test Dataset

- 10 white female chassis
- 10 synthesized white female faces
- This yielded a total of 100 images
- 4500 comparisons executed
 - 450 same-chassis comparisons, 4050 cross-chassis comparisons
 - A:B comparisons retained, B:A comparisons eliminated
FR Matching Technologies

• Three FR matchers selected for evaluation to gain insights into behavior across different technologies
• Two commercial FR tools (Vendor A and B)
 - Comparison score range: 0-1, higher scores = stronger match
• OpenFace (deep learning, open source)
 - Returns normalized Euclidean distances (d); less distance = stronger match
 - To provide a common scale, complement of the distance (1–d) is reported
Same-Chassis and Different-Chassis Results

- Vendor A
- Vendor B
- OpenFace

![Box plot diagram showing comparison scores for Same Chassis and Different Chassis results for Vendor A, Vendor B, and OpenFace.](image)

- Outliers
- 3rd quartile
- Inter-quartile range
- 1st quartile
Same vs. Different Chassis Analysis

• For all three matchers, the median values are significantly higher for same-chassis comparisons than for different chassis-comparisons
• Variation in distributions between COTS and open source is apparent
 - 1st and 3rd quartiles are about the same for Vendor A and B, whereas OpenFace’s are a few tenths higher
 - Vendor A and B have wide inter-quartile ranges relative to OpenFace
 - May be attributable to use of comparison scores vs. Euclidean distance
High-Scoring Same-Chassis Comparisons (1)

Vendor B: 0.7637
High-Scoring Same-Chassis Comparisons (2)

Vendor A: 0.91152
High-Scoring Same-Chassis Comparisons (3)

OpenFace: 0.92072
Same vs. Different Chassis Example

Vendor B: 0.185
OpenFace: 0.597

Scores Increase

Vendor B: 0.449
OpenFace: 0.755
Isolated Chassis Test: Background

- Customer requirements for backgrounds vary
- A further test conducted in which only backgrounds were edited to assess impact on performance

Is there an expectation that score 1 > score 2?

Do comparison pairs with identical color backgrounds generate higher scores than pairs with different color backgrounds?
Isolated Chassis Test: Dataset and Matchers

- 53 real images (faces not modified or synthesized)
- 53 blue background images, 53 white background images
- 5408 impostor comparisons were evaluated
 - 2704 white vs. white comparisons
 - 2704 blue vs. white comparisons
 - A:B comparisons retained, B:A comparisons eliminated
- Same matchers used for this test (2 COTS, OpenFace)
Isolated Chassis Results

- Minimal score Δ for COTS vendors
 - Variation mostly within +/- 0.1
 - Median ~0
- OpenFace scores are impacted by background
- Whether this is sufficient to meaningfully impact FMR is TBD

\[
\text{score difference} = (\text{white−white score}) - (\text{blue−white score})
\]
Vendor A Sample Outlier

score difference = 0.0897
Vendor B Sample Outlier

score difference = 0.194
OpenFace Sample Outlier

score difference = 0.557
Conclusions

• Same vs different chassis evaluation results indicate that non-face regions influence FR performance
• Isolated chassis evaluation, however, indicated that the background does not significantly impact FR performance for COTS matchers
• It seems that there are different regions of the image that matchers are considering to varying degrees, such that there is a:
 - Strong concentration in the face region
 - Weak concentration in the background area
 - Hypothesis, medium concentration in the non-face, non-background chassis region

FR Influence Heat Map
Future Work

• Test strong concentration area with real faces
 - There may potentially be something about Novetta’s face synthesis that somehow compels the FR system to consider non-face regions
 - Different real faces inserted into the same chassis may have a different outcome
• Validate chassis area as an influential area
 - Develop test to modify the non-face, non-background chassis region such that FR performance can be evaluated
• Improve background editing in the low concentration area
 - In the Isolated Chassis test, all the background values were set to the same RGB pixel intensity
 - Adding pixel intensity variation by emulating typical backdrop photo captures may yield a stronger influence on FR performance